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Dynamics and asymptotical behavior of spreading processes in a closed system

Shi-Jie Xiong
Department of Physics, Nanjing University, Nanjing 210093, China
(Received 11 December 2003; published 1 June 004

We construct differential-integrative equations to investigate the effects of different distributions for the
incubation period, defined as the period between receiving of the message and the beginning of the active state,
and for the active period, the length of the active state, on the spreading dynamics in a closed system where one
member can be dynamically linked to any other with given probability. The evolution of the ensemble-
averaged infected ratg(t) is calculated by solving the equations for various distribution functions. Both the
short-term oscillations and long-term saturation crucially depend on the form and parameters of the distribution
functions. The obtained results may provide insights into the characteristics of oscillations and a prognosis of
a spreading process in closed system.
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[. INTRODUCTION nentially bounded, and the so-called scale-fi®#) networks
_ . . that exhibit a power-law connectivity distributighl1—-13. It
In spite of the complexity of networks in the real world, js shown that a susceptible-infected-susceptiBks) model
such as the Interndtl], the food webg2], the spreading on SF networks has no epidemic threshfid], contrary to
webs of epidemic diseas¢8], and the scientific collabora- the threshold theory in epidemiologil4]. The studies of
tion networks[4], their basic and common statistical charac-susceptible-infected-recoveré8IR) models also show the
teristics seem to be well described and simulated with exerucial role of heterogeneity in networks on the spreading
ceedingly simple models, and have attracted extensivgl5,16. Besides the studies of the long-term behavior such
interest among physicists. In this context knowledge of theas the epidemic threshold, the short-term behavior such as
building of statistical models, of ensemble theories, and ofhe oscillatory prevalence has also been stufi&g.
methods developed for the study of phase transitions and Although the effects of the “spatial” heterogeneity or to-
cooperative phenomena in many-body systems becomd®logy of networks on the spreading dynamics have been
helpful in the understanding of the real-world networksextensively studied, studies of effects of “temporal” struc-
which are outside the traditional realm of physics. In thesdures in the prevalence are still rare. In fact, for a given
efforts models based on small-world netwo(&WN'’s), in- e_pldemlc dls_ease there ex_lst char_actenstlc dlstr|_but|0n func-
troduced by Watts and Strogafs], have been intensively tions for.the incubation period, defined as t_he.perlod betwe_en
investigated. A SWN is made of a lattice indedimensional the receiving of the message and the beginning of the active

; ; ; ; state, and for the active period, defined as the length of the
Egi;i Il?n\li\?rr:grt]oasfi?eﬂs:tlr(;(r?c)jc?r];r;ogg?r;rliézp;icﬁldevlvalli?icr:eev,xsacnve state. These distribution functions reflect the nature of

the new bonds can connect sites very far away in space, th the relevant virus, .the. Ig—:-vel of curing, and the discrepancy in
. . ! » (NG sponse among individuals. The temporal structure of the
make a big world become a small one. This effect is quantiyee|oning and curing of an epidemic disease can be speci-
tatively described by the averaged shortest distance betwegfy py these distribution functions. Similar to the spatial
any two sites,|, which follows the scaling lawm(N,p)  topology of networks, such a temporal structure has also cru-
~(N)YF(N/N") with F(u) having limits F(u)~u for u  cial effects on the long-term and short-term behavior of the
<1, F(u)~Inu for u>1, andN"~p™ being a crossover spreading dynamics. Most previous studies of spreading dy-
size separating the big- and small-world reginieg]. It is  namics, however, did not consider details of the temporal
also shown that in the quantum version of SWN’s the elecstructure. For example, in the SIS and SIR models which are
tron states are more likely to be extended among the wholeidely used to study the dynamics in various networks, the
system, in spite of the localization effect of the randomnessieveloping or curing process is simply characterized by a
[8]. Recently, it is shown that a nonequilibrium phase transisingle parameter, the deactivated rate or the recovery rate. As
tion can occur in directed small-world networ|&j. we will see below, this single parameter corresponds to a
Our life is intimately connected with spreading processesjuarter-sine-shaped distribution function. In practice, a large
in social, biological, and economic systems. As common feanumber of parameters are needed to specify a distribution
tures, every process is constituted with many subprocesses fafnction: its cumulants of different orders. A single param-
the transmission of a specific “message” from one individuakter is not enough even for specifying the basic features of a
to another, and the whole process is hon-Markovian and iristribution: the first and second cumulants corresponding to
reversible. Recently, effects of heterogeneity and topology ithe mean value and the width of the distribution. In this
networks on the dynamics of spreading have attracted mucbaper we adopt differential-integrative equations to investi-
attention of researchers. There are two types of networks: thgate the effects of distributions for the incubation and active
exponential networks, such as the random graph mdd®l periods on the spreading dynamics in a closed system where
and the SWN5], in which the nodes’ connectivity is expo- one member can be dynamically linked to any others with
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given probability. The evolution of the ensemble-averagedA member who receives the message will become active
infected ratey(t) is calculated by solving the equations for after his incubation period. This active state will last during
various distribution functions. It is found that both short-termhis active period. After that he will be permanently inactive.
oscillations and long-term saturation crucially depend on theSo the increase of the averaged active number in a unit time
form and parameters of these distribution functions. The reat momentt is
sults obtained reproduce oscillations with different shapes

observed in many practical processes and present a quantita- dD(t) _ (' | dSt') , v dSt)
tive dependence of the saturated infected rate on the form dt dt dt’ Py(t=t) - 0 dt dr’ !
and parameters of the distributions and on the system size.
The saturated infected rate is a crucial quantity for the prog- L ,

nosis estimation of a spreading process in a closed system. X(t' - t")Pyt -t )]' (2)

For example, if a disease is spreading in a biological species

without control, one may be interested in the questionHere the integrations are used for the ensemble average. We
whether all the individuals will be infected. If the saturated assume that the spreading process is startet-@tfrom
value of the infected rate is 1, the answer to this question isome seed members. Thus, the initial conditions are

“yes” and the species may be annihilated. If it is less than 1,

there will be a finite number of survivals at the end and the St<0)=D(t<0)=0, St=0=$, 3

species will survive. As a platform we adopt a closed systemWhereso is the number of seed members. By rescaling the

in which every pair of members has a probability, denoted b%ime, r=t/(cN), and defining infected rate(r)=S(r)/N

¢, to be linked during a unit tim&,, and all the links ran- . _ .
domly vary with time. The spreading begins from one orand active ratey(7) =D(7)/N, Egs.(1)~3) can be rewritten

more seed members, who receive the messatreGtAfter

an incubation period; from receiving, they become active dy(7)

and begin to send out the message to other members via a4 7(D[1-w7], (4)
links. Those members receiving the message also become T

active after their own incubation time, and the spreading is

0

continued. Every active member stops to send out the mes- d#7(7) _de , d)’(T’)F, (r= 1) _ff' dT,,dV(T")E,
sage after an active peridg, reflecting the fact that an in- dr  Jo Tl gy TRTTT 0 d !
fected person will not infect others after cure or death in the

epidemic spreading or a person becomes uninterested in ><(T’—7”)I~32(T— TI)} (5)
spreading the message in the processes of information '

spreading. Thus, for every member there are three possible

states: the unaffected state, infected but not active state of
. . ! . L . <0)= <0)= =0) = =

periodt;, and active state of peridg. This is similar to the NT<0)=nr<0=0, Hr=0)=%n=%N, (6

SIR models for the epidemic processes, but now two re""‘x\'/vhereﬁl(r) and “|52(T) are probabilitiesP, (t) and P,(t) ex-

ation times are introduced, making the model NON-yressed with rescaled time. Equatiqd$~(6) are not explic-

Markovian and more suitable for the study of the dynamicgitIy dependent orc andN, and we can solve them and then

The _r(_asults show that although the short-term behavior 'Substituter=cNt into the solutions to obtain the behavior of
sensitive to most of the parameters, there are only few pa’éystem with specific values afandN

rametergmainly t,) that have an essential effect on the long-
term behavior. The spatial structure of the model corresponds

to the small-world limit(p— 1) of the SWN. This is a simple ~ !ll. DYNAMICS AND ASYMPTOTIC BEHAVIOR FOR
network so that we can focus on the effects of the temporal DIFFERENT DISTRIBUTION FUNCTIONS OF
structure. INCUBATION AND ACTIVE PERIODS

Il. DIFFERENTIAL-INTEGRATIVE EQUATIONS The form and parameters of distribution functidﬁgt)

and P,(t) have crucial effects on the spreading dynamics. In

Let us construct equations governing the dynamics of thPSIS or SIR models the transition from infected to recovered
ensemble-averaged number of infected members who ha

received the messag8(t), and the averaged number of aC_\fSr removed state is described by a single parameter, the

. b . losed it b average recoverg@ar removed rate 8. This corresponds to a
tive membersD(t), in a closed system withh members. isyribytion functionPs(t) for the period from infected to
During a unit time at moment, there are averagelgD(t)

. . : recoveredremoved state which satisfies equation
X[N=S(t)] links, each of which connects an active member

and an unaffected member. Thus, the increase of infected dPgR(t) t

members in this unit time can be written as Tat Bl1- . Pgir(ndr |, (7)
dst
% =cDM[N-S1)]. (1) with initial conditions Pg(t)|;=0=0 and dPg(t)/dt|=o=8

and the constriction thaff, Pgir(7)d7 cannot be greater than
We assume tha®,(t) and P,(t) are distribution functions of 1. From this one can easily see that the distribution function
incubation and active periods for all members, respectivelyof the SIR or SIS models has the quarter-sine form
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F 0.03 (4 T T — 1 active periodr, and initial seed ratey,.
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001 | SRy T 1 havior. For smallr, there are oscillations isy. By increasing

0.00

— 71, both the period and amplitudes of oscillations are in-
T creased. It can be seen that in some case— e.g., the dotted
line— the oscillatory prevalence may be recovered from a
FIG. 1. Infected ratey (a) and active ratey (b) as functions of  temporary silence of almost complete extinction. Such be-
rescaled timer for the 5-function distribution. Parameter values are havior of oscillations is often observed in practjd&], but is
shown in pane(b). not explained by usual statistical analysis. The present results
imply that the oscillatory behavior can be attributed to the
- .~ T existence of the incubation period, and a recoverable preva-
Pan(t) = VBsin(VBY), fOFm =1=0, ® lence after a complete silence can occur if the incubation
SIR v period is long enough compared with the active period. In all
0, otherwise. cases oscillations are damped out for larghue to the finite

This form of distribution is not sufficient to describe the SiZ€ Of the closed system. .
variety of the temporal structure in practice. Especially, one " Fig- 2 we plot the dependence of the saturated infected
needs at least two parameters—the mean value and thate v(*) on 7, a”F’ Yo- It can b_e seen thag(«) varies fro_m
width—to specify the basic feature of a distribution. In the 0 t0 1 by increasingr, and fixing y,, and only slightly in-
following we consider different distribution functions and créases by fixing and increasingy,. All the data in Fig. 2

investigate their effects on the dynamics. can be fitted with the Hill function as shown in Fig. 3,
o
A. & probabilities for incubation and active periods W) ~ P (10
2

At first we consider the probabilitiesP;(t) = 8(t-t;) and
P,(t)=48(t-t,). In this case all the members have the samevhere 7} is the active period renormalized with the initial
incubation and active periods andt,, and the distribution value asry=m,+ay,e 2 with a~5.1 andb~0.96, and the
width is zero. This may provide information on the effects offitting parameters ard&=1.351+0.003 andu=3.64+0.03.
the mean values of incubation and active periods. By substi-

tuting & functions into Eqs(4) and(5) one gets ol ' : ' ' :

dy(7)

a4 [1=-yDAT=7) =A== 1)], (9 0.8 1
where 11 ,=cNY; ,. Together with the initial conditior(6), 0.6 Fitting function: 1
there are three parameterg, 7, and y, determining the B 0.4l ) =) )
dynamics. In Fig. 1 we plot the evolution gf7) and #(7) =" L= 1351 + 0.003
for different values of parameters. For all parameter values 02| p= 3.6440.03 _
the infected rate is saturated at the largkmit. The satu-
rated infected rate/(«) depends on, and y,, but is inde- 0.0f -
pendent ofr;. The long-term behavior relies on the initial 0 1 3 3 I 5 5
condition due to the non-Markovian nature of the processes. 7

The rescaled active periog is also an important parameter
determining both the short-term and long-term behavior. The FIG. 3. Saturated infected ratg) as a function of renormal-
rescaled incubation periog only infects the short-term be- ized active periodr, (dotg and the fitting functior(solid line).
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For a large system, the rate of initial seeds is smaghs 1. In 003} = w.=0.01, w,=0.01 ]

this caser,~ 7,, and the asymptotic behavior is only deter- ? @ ___ _w‘=0'01 w.=0.61

mined by 7. i W=0.71. w.=0.01
The obtained results show that for a spreading process in ,\0'02_ w141 w001 |

a closed system there exists a dimensionless “risk” index < o

7,=CNt,, which determines whether the spreading can cover 0.01}

everyone in the system. if,=3, all individuals in the sys- AT

tem will be infected in a sufficiently long time, because in E

this casey() ~1. If c andt, are fixed, the risk index is 0.00—=5,

proportional to the size of the system. This implies that larger T

species with high population, such as dinosaurs, are more

frangible than smaller species with low population to the o.10k

spreading of epidemic diseases. Another example is the

prevalence of the bird flu among chickens in a closed farm or 0.08}

village. For fixedc andt,, the final survival rate of chickens —_

in a large chicken farm is much smaller than that in a village = 0.08 —— w,=w,=0.01

where there are only a few chickens fed by villagers. Fora [/ e w,=0.01, w,=0.61

given system size the risk index can be quantitatively esti- o04r S L w,=1.41, w,=0.61]

mated from the density of links and the active perioth. 0.02

0 2 4 6 8 10 12
T

B. Uniform distribution probabilities for incubation ) ) )
and active periods FIG. 4. Active ratey (a) and infected ratey (b) as functions of

rescaled timer for uniform distributions with differentv; andws.
Owing to the discrepancies among individuals, the distri-Other parameters arg=1.6, 7,=0.8, andy,=0.03.
bution probabilities usually have finite widths. A simple form
for describing widths is the uniform distribution in a ¢, poisson distributions for incubation and active periods
window— i.e.,
The diversity widths in the uniform distributions have no
1 Wiz Wiz effect on the long-term behavior. This may be due to the
Pio)(t) = O\t-tig*+—— | X Ol i+ —— ~t), sharp drops at the edges. The situation could be changed if
L the distributions have long-term tails. Here we consider the
(11)  Poisson distribution which is written as

where t,, is the averaged incubatiogactive) period and 1.0

W, is the corresponding distribution width. With the time

rescaling one has rescaled average perigds=cNt,, and 0.8 e A s s a2, 20
rescaled widthsv;; =cNW,,). By substituting them into Eq. 06l e ey

Py HiEid =04, 9,=2.0 ——q,=12,q,=2.8]
(5), we have = 04l S :1=o.a,:z=2.o S
dp(n 1 ) 1 (5. - , ool [Nf
“dr VTl[y(Tl) - Am]- W, . dr'[y(m) = A7 )], oy @)
(12) 09 20 40 60 80 100
T

where ﬁ(z)zr—(rl(z)iwl,ZIZ) and 7" =7 —(r£w,/2). To- 0.24
gether with Eq(4), one can numerically solve the evolution
of v(7) and 7(7). 0.18}

In Figs. 4a) and 4b) we plot the evolution of the active
and infected rates for given, and =, and differentw; and © 0.12¢
W,. It can be seen that the increase of diversity of both the &
incubation and active periods reduces the oscillations of the 0.06}
active rate, but does not change the overall trend of the evo-
lution of y(7). Especially, the recoverable prevalence after a 0.00 L=z

complete silence can still occur if the width of distribution of 60

the incubation period is finite but small, and it will disappear
if Wy is large enough. The ConC|USiC_)nS on the |0n9't(?rm be- FIG. 5. Infected ratey (a) and active ratey (b) as functions of
havior, such as the value ¢f>), obtained for the-function  rescaled timer for the Poisson distributiony,=0.03, and other
distributions are still valid. parameters are shown in parej.
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~ 1, of distribution functions for the incubation and active peri-
Pip)(7) = —e"he, ods, it is found that the final infected rate of the spreading is
%2 mainly determined by a dimensionless risk indgxpropor-

whereq,,) is a parameter characterizing the rescaled averagéonal to the system size, contact density, and average active
incubation(active) period. By substituting Eq13) into Egs. period. Whenr, is larger than a critical value of 3, the final
(4) and(5) and numerically solving them, we obtain the evo- infected rate can reach unity, implying coverage of the
lution of the infected and active rates. The results for variou$preading over the whole system. The final infected rate is
values ofqg, andq, are shown in Fig. 5. From Fig.(& we only slightly affected by the initial seed rate due to the non-
see thaty(7) still saturates to a value less than 1 and theMarkovian nature. In the case of Poisson distributions it is
saturated value increases withy,. Differently from  @lso slightly affected by the incubation period. In many cases
&-function and uniform distributions, now() not only de- Wlth f|n_|te incubation period the s_hort-term b_eha_wor shows
pends ongy, but also decreases with increasigg The g, oscillations. The shape and amplitude of oscillations depend
dependence of/(«) decreases wheg, increases. This de- ©n both distributions of the incubation and active periods.
pendence is due to the long tail of the distribution for ~ 1he amplitude of oscillations is reduced by increasing the
which the long-term rate of the receiving-but-not-active in-Widths of the distributions. If the incubation period is long
dividuals can reduce the rate of new receivers. In Fig) 5 enough and the distribution W_ldth is small, a recoverable
there are no oscillations ip(7) for any g, and gy, owing to preva!enpe after a completg silence can occur. The results
the wide nature of the Poisson distribution. The evolutionduantitatively show the crucial effects of the temporal char-

(13)

curves of 7(7) follow a Gaussian-like behavior, similar to acteristics on both the long-term and short-term behavior of

many realistic curves of epidemic spreading processes wit
out oscillations.

IV. CONCLUSIONS

ht_he spreading dynamics.
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