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We construct differential-integrative equations to investigate the effects of different distributions for the
incubation period, defined as the period between receiving of the message and the beginning of the active state,
and for the active period, the length of the active state, on the spreading dynamics in a closed system where one
member can be dynamically linked to any other with given probability. The evolution of the ensemble-
averaged infected rategstd is calculated by solving the equations for various distribution functions. Both the
short-term oscillations and long-term saturation crucially depend on the form and parameters of the distribution
functions. The obtained results may provide insights into the characteristics of oscillations and a prognosis of
a spreading process in closed system.
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I. INTRODUCTION

In spite of the complexity of networks in the real world,
such as the Internet[1], the food webs[2], the spreading
webs of epidemic diseases[3], and the scientific collabora-
tion networks[4], their basic and common statistical charac-
teristics seem to be well described and simulated with ex-
ceedingly simple models, and have attracted extensive
interest among physicists. In this context knowledge of the
building of statistical models, of ensemble theories, and of
methods developed for the study of phase transitions and
cooperative phenomena in many-body systems becomes
helpful in the understanding of the real-world networks
which are outside the traditional realm of physics. In these
efforts models based on small-world networks(SWN’s), in-
troduced by Watts and Strogatz[5], have been intensively
investigated. A SWN is made of a lattice in ad-dimensional
space in which a fractionspd of bonds are replaced with new
bonds linking to sites randomly distributed on the lattice. As
the new bonds can connect sites very far away in space, they
make a big world become a small one. This effect is quanti-
tatively described by the averaged shortest distance between

any two sites, l̄, which follows the scaling lawl̄sN,pd
,sN*d1/dFsN/N*d with Fsud having limits Fsud,u1/d for u
!1, Fsud, ln u for u@1, andN* ,p−1 being a crossover
size separating the big- and small-world regimes[6,7]. It is
also shown that in the quantum version of SWN’s the elec-
tron states are more likely to be extended among the whole
system, in spite of the localization effect of the randomness
[8]. Recently, it is shown that a nonequilibrium phase transi-
tion can occur in directed small-world networks[9].

Our life is intimately connected with spreading processes
in social, biological, and economic systems. As common fea-
tures, every process is constituted with many subprocesses of
the transmission of a specific “message” from one individual
to another, and the whole process is non-Markovian and ir-
reversible. Recently, effects of heterogeneity and topology in
networks on the dynamics of spreading have attracted much
attention of researchers. There are two types of networks: the
exponential networks, such as the random graph model[10]
and the SWN[5], in which the nodes’ connectivity is expo-

nentially bounded, and the so-called scale-free(SF) networks
that exhibit a power-law connectivity distribution[11–13]. It
is shown that a susceptible-infected-susceptible(SIS) model
on SF networks has no epidemic threshold[13], contrary to
the threshold theory in epidemiology[14]. The studies of
susceptible-infected-recovered(SIR) models also show the
crucial role of heterogeneity in networks on the spreading
[15,16]. Besides the studies of the long-term behavior such
as the epidemic threshold, the short-term behavior such as
the oscillatory prevalence has also been studied[17].

Although the effects of the “spatial” heterogeneity or to-
pology of networks on the spreading dynamics have been
extensively studied, studies of effects of “temporal” struc-
tures in the prevalence are still rare. In fact, for a given
epidemic disease there exist characteristic distribution func-
tions for the incubation period, defined as the period between
the receiving of the message and the beginning of the active
state, and for the active period, defined as the length of the
active state. These distribution functions reflect the nature of
the relevant virus, the level of curing, and the discrepancy in
response among individuals. The temporal structure of the
developing and curing of an epidemic disease can be speci-
fied by these distribution functions. Similar to the spatial
topology of networks, such a temporal structure has also cru-
cial effects on the long-term and short-term behavior of the
spreading dynamics. Most previous studies of spreading dy-
namics, however, did not consider details of the temporal
structure. For example, in the SIS and SIR models which are
widely used to study the dynamics in various networks, the
developing or curing process is simply characterized by a
single parameter, the deactivated rate or the recovery rate. As
we will see below, this single parameter corresponds to a
quarter-sine-shaped distribution function. In practice, a large
number of parameters are needed to specify a distribution
function: its cumulants of different orders. A single param-
eter is not enough even for specifying the basic features of a
distribution: the first and second cumulants corresponding to
the mean value and the width of the distribution. In this
paper we adopt differential-integrative equations to investi-
gate the effects of distributions for the incubation and active
periods on the spreading dynamics in a closed system where
one member can be dynamically linked to any others with
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given probability. The evolution of the ensemble-averaged
infected rategstd is calculated by solving the equations for
various distribution functions. It is found that both short-term
oscillations and long-term saturation crucially depend on the
form and parameters of these distribution functions. The re-
sults obtained reproduce oscillations with different shapes
observed in many practical processes and present a quantita-
tive dependence of the saturated infected rate on the form
and parameters of the distributions and on the system size.
The saturated infected rate is a crucial quantity for the prog-
nosis estimation of a spreading process in a closed system.
For example, if a disease is spreading in a biological species
without control, one may be interested in the question
whether all the individuals will be infected. If the saturated
value of the infected rate is 1, the answer to this question is
“yes” and the species may be annihilated. If it is less than 1,
there will be a finite number of survivals at the end and the
species will survive. As a platform we adopt a closed system
in which every pair of members has a probability, denoted by
c, to be linked during a unit timet0, and all the links ran-
domly vary with time. The spreading begins from one or
more seed members, who receive the message att=0. After
an incubation periodt1 from receiving, they become active
and begin to send out the message to other members via
links. Those members receiving the message also become
active after their own incubation time, and the spreading is
continued. Every active member stops to send out the mes-
sage after an active periodt2, reflecting the fact that an in-
fected person will not infect others after cure or death in the
epidemic spreading or a person becomes uninterested in
spreading the message in the processes of information
spreading. Thus, for every member there are three possible
states: the unaffected state, infected but not active state of
period t1, and active state of periodt2. This is similar to the
SIR models for the epidemic processes, but now two relax-
ation times are introduced, making the model non-
Markovian and more suitable for the study of the dynamics.
The results show that although the short-term behavior is
sensitive to most of the parameters, there are only few pa-
rameters(mainly t2) that have an essential effect on the long-
term behavior. The spatial structure of the model corresponds
to the small-world limitsp→1d of the SWN. This is a simple
network so that we can focus on the effects of the temporal
structure.

II. DIFFERENTIAL-INTEGRATIVE EQUATIONS

Let us construct equations governing the dynamics of the
ensemble-averaged number of infected members who have
received the message,Sstd, and the averaged number of ac-
tive members,Dstd, in a closed system withN members.
During a unit time at momentt, there are averagelycDstd
3fN−Sstdg links, each of which connects an active member
and an unaffected member. Thus, the increase of infected
members in this unit time can be written as

dSstd
dt

= cDstdfN − Sstdg. s1d

We assume thatP1std andP2std are distribution functions of
incubation and active periods for all members, respectively.

A member who receives the message att will become active
after his incubation period. This active state will last during
his active period. After that he will be permanently inactive.
So the increase of the averaged active number in a unit time
at momentt is

dDstd
dt

=E
0

t

dt8FdSst8d
dt8

P1st − t8d −E
0

t8
dt9

dSst9d
dt9

P1

3st8 − t9dP2st − t8dG . s2d

Here the integrations are used for the ensemble average. We
assume that the spreading process is started att=0 from
some seed members. Thus, the initial conditions are

Sst , 0d = Dst ø 0d = 0, Sst = 0d = S0, s3d

whereS0 is the number of seed members. By rescaling the
time, t; t / scNd, and defining infected rategstd;Sstd /N
and active ratehstd;Dstd /N, Eqs.(1)–(3) can be rewritten
as

dgstd
dt

= hstdf1 − gstdg, s4d

dhstd
dt

=E
0

t

dt8Fdgst8d
dt8

P̃1st − t8d −E
0

t8
dt9

dgst9d
dt9

P̃1

3st8 − t9dP̃2st − t8dG , s5d

gst , 0d = hst ø 0d = 0, gst = 0d = g0 ; S0/N, s6d

where P̃1std and P̃2std are probabilitiesP1std and P2std ex-
pressed with rescaled time. Equations(4)–(6) are not explic-
itly dependent onc andN, and we can solve them and then
substitutet=cNt into the solutions to obtain the behavior of
system with specific values ofc andN.

III. DYNAMICS AND ASYMPTOTIC BEHAVIOR FOR
DIFFERENT DISTRIBUTION FUNCTIONS OF

INCUBATION AND ACTIVE PERIODS

The form and parameters of distribution functionsP1std
andP2std have crucial effects on the spreading dynamics. In
SIS or SIR models the transition from infected to recovered
(or removed) state is described by a single parameter, the
average recovered(or removed) rateb. This corresponds to a
distribution functionPSIRstd for the period from infected to
recovered(removed) state which satisfies equation

dPSIRstd
dt

= bS1 −E
0

t

PSIRstddtD , s7d

with initial conditions PSIRstdut=0=0 and dPSIRstd /dtut=0=b
and the constriction thate0

t PSIRstddt cannot be greater than
1. From this one can easily see that the distribution function
of the SIR or SIS models has the quarter-sine form
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PSIRstd = 5ÎbsinsÎbtd, for
p

2Îb
ù t ù 0,

0, otherwise.

s8d

This form of distribution is not sufficient to describe the
variety of the temporal structure in practice. Especially, one
needs at least two parameters—the mean value and the
width—to specify the basic feature of a distribution. In the
following we consider different distribution functions and
investigate their effects on the dynamics.

A. d probabilities for incubation and active periods

At first we consider thed probabilitiesP1std=dst− t1d and
P2std=dst− t2d. In this case all the members have the same
incubation and active periodst1 and t2, and the distribution
width is zero. This may provide information on the effects of
the mean values of incubation and active periods. By substi-
tuting d functions into Eqs.(4) and (5) one gets

dgstd
dt

= f1 − gstdgfgst − t1d − gst − t2 − t1dg, s9d

where t1,2=cNt1,2. Together with the initial condition(6),
there are three parameterst1, t2, and g0 determining the
dynamics. In Fig. 1 we plot the evolution ofgstd and hstd
for different values of parameters. For all parameter values
the infected rate is saturated at the large-t limit. The satu-
rated infected rategs`d depends ont2 and g0, but is inde-
pendent oft1. The long-term behavior relies on the initial
condition due to the non-Markovian nature of the processes.
The rescaled active periodt2 is also an important parameter
determining both the short-term and long-term behavior. The
rescaled incubation periodt1 only infects the short-term be-

havior. For smallt, there are oscillations inh. By increasing
t1, both the period and amplitudes of oscillations are in-
creased. It can be seen that in some case— e.g., the dotted
line— the oscillatory prevalence may be recovered from a
temporary silence of almost complete extinction. Such be-
havior of oscillations is often observed in practice[18], but is
not explained by usual statistical analysis. The present results
imply that the oscillatory behavior can be attributed to the
existence of the incubation period, and a recoverable preva-
lence after a complete silence can occur if the incubation
period is long enough compared with the active period. In all
cases oscillations are damped out for larget due to the finite
size of the closed system.

In Fig. 2 we plot the dependence of the saturated infected
rategs`d on t2 andg0. It can be seen thatgs`d varies from
0 to 1 by increasingt2 and fixing g0, and only slightly in-
creases by fixingt2 and increasingg0. All the data in Fig. 2
can be fitted with the Hill function as shown in Fig. 3,

gs`d ,
t28

m

km + t28
m , s10d

where t28 is the active period renormalized with the initial
value ast28=t2+ag0e

−bt2 with a,5.1 andb,0.96, and the
fitting parameters arek=1.351±0.003 andm=3.64±0.03.

FIG. 1. Infected rateg (a) and active rateh (b) as functions of
rescaled timet for thed-function distribution. Parameter values are
shown in panel(b).

FIG. 2. Saturated infected rategs`d as a function of rescaled
active periodt2 and initial seed rateg0.

FIG. 3. Saturated infected rategs`d as a function of renormal-
ized active periodt28 (dots) and the fitting function(solid line).
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For a large system, the rate of initial seeds is small,g0!1. In
this caset28,t2, and the asymptotic behavior is only deter-
mined byt2.

The obtained results show that for a spreading process in
a closed system there exists a dimensionless “risk” index
t2=cNt2, which determines whether the spreading can cover
everyone in the system. Ift2*3, all individuals in the sys-
tem will be infected in a sufficiently long time, because in
this casegs`d,1. If c and t2 are fixed, the risk index is
proportional to the size of the system. This implies that larger
species with high population, such as dinosaurs, are more
frangible than smaller species with low population to the
spreading of epidemic diseases. Another example is the
prevalence of the bird flu among chickens in a closed farm or
village. For fixedc andt2, the final survival rate of chickens
in a large chicken farm is much smaller than that in a village
where there are only a few chickens fed by villagers. For a
given system size the risk index can be quantitatively esti-
mated from the density of linksc and the active periodt2.

B. Uniform distribution probabilities for incubation
and active periods

Owing to the discrepancies among individuals, the distri-
bution probabilities usually have finite widths. A simple form
for describing widths is the uniform distribution in a
window— i.e.,

P1s2dstd =
1

W1s2d
uSt − t1s2d +

W1s2d

2
D 3 uSt1s2d +

W1s2d

2
− tD ,

s11d

where t1s2d is the averaged incubation(active) period and
W1s2d is the corresponding distribution width. With the time
rescaling one has rescaled average periodst1s2d=cNt1s2d and
rescaled widthsw1s2d=cNW1s2d. By substituting them into Eq.
(5), we have

dhstd
dt

=
1

w1
fgst1

−d − gst1
+dg −

1

w1w2
E

t2
+

t2
−

dt8fgst18
−d − gst18

+dg,

s12d

where t1s2d
± =t−st1s2d±w1,2/2d and t18

±=t8−st1±w1/2d. To-
gether with Eq.(4), one can numerically solve the evolution
of gstd andhstd.

In Figs. 4(a) and 4(b) we plot the evolution of the active
and infected rates for givent1 and t2 and differentw1 and
w2. It can be seen that the increase of diversity of both the
incubation and active periods reduces the oscillations of the
active rate, but does not change the overall trend of the evo-
lution of gstd. Especially, the recoverable prevalence after a
complete silence can still occur if the width of distribution of
the incubation period is finite but small, and it will disappear
if w1 is large enough. The conclusions on the long-term be-
havior, such as the value ofgs`d, obtained for thed-function
distributions are still valid.

C. Poisson distributions for incubation and active periods

The diversity widths in the uniform distributions have no
effect on the long-term behavior. This may be due to the
sharp drops at the edges. The situation could be changed if
the distributions have long-term tails. Here we consider the
Poisson distribution which is written as

FIG. 4. Active rateh (a) and infected rateg (b) as functions of
rescaled timet for uniform distributions with differentw1 andw2.
Other parameters aret1=1.6, t2=0.8, andg0=0.03.

FIG. 5. Infected rateg (a) and active rateh (b) as functions of
rescaled timet for the Poisson distribution.g0=0.03, and other
parameters are shown in panel(a).
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P̃1s2dstd =
1

q1s2d
e−t/q1s2d, s13d

whereq1s2d is a parameter characterizing the rescaled average
incubation(active) period. By substituting Eq.(13) into Eqs.
(4) and(5) and numerically solving them, we obtain the evo-
lution of the infected and active rates. The results for various
values ofq1 andq2 are shown in Fig. 5. From Fig. 5(a) we
see thatgstd still saturates to a value less than 1 and the
saturated value increases withq2. Differently from
d-function and uniform distributions, nowgs`d not only de-
pends onq2, but also decreases with increasingq1. The q1
dependence ofgs`d decreases whenq2 increases. This de-
pendence is due to the long tail of thet1 distribution for
which the long-term rate of the receiving-but-not-active in-
dividuals can reduce the rate of new receivers. In Fig. 5(b)
there are no oscillations inhstd for any q1 andq2, owing to
the wide nature of the Poisson distribution. The evolution
curves ofhstd follow a Gaussian-like behavior, similar to
many realistic curves of epidemic spreading processes with-
out oscillations.

IV. CONCLUSIONS

As a summary, from simulations of spreading processes in
a closed system at the small-world limit with different types

of distribution functions for the incubation and active peri-
ods, it is found that the final infected rate of the spreading is
mainly determined by a dimensionless risk indext2, propor-
tional to the system size, contact density, and average active
period. Whent2 is larger than a critical value of 3, the final
infected rate can reach unity, implying coverage of the
spreading over the whole system. The final infected rate is
only slightly affected by the initial seed rate due to the non-
Markovian nature. In the case of Poisson distributions it is
also slightly affected by the incubation period. In many cases
with finite incubation period the short-term behavior shows
oscillations. The shape and amplitude of oscillations depend
on both distributions of the incubation and active periods.
The amplitude of oscillations is reduced by increasing the
widths of the distributions. If the incubation period is long
enough and the distribution width is small, a recoverable
prevalence after a complete silence can occur. The results
quantitatively show the crucial effects of the temporal char-
acteristics on both the long-term and short-term behavior of
the spreading dynamics.

ACKNOWLEDGMENTS

This work was supported by National Foundation of
Natural Science in China Grant No. 60276005 and by the
China State Key Projects of Basic Research Grant No.
(G1999064509).

[1] B. A. Huberman and L. A. Adamic, Nature(London) 401, 131
(1999); R. Albert, H. Jeong, and A.-L. Barabási,ibid. 401, 130
(1999).

[2] S. L. Pimm, J. H. Lawton, and J. E. Cohen, Nature(London)
350, 669 (1991); R. T. Paine, ibid. 355, 73 (1992); K.
McCann, A. Hastings, and G. R. Huxel,ibid. 395, 794(1998).

[3] C. Moore and M. E. J. Newman, Phys. Rev. E61, 5678
(2000); M. Kuperman and G. Abramson, Phys. Rev. Lett.86,
2909 (2001); M. E. J. Newman, Phys. Rev. E66, 016128
(2002).

[4] M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.98, 404
(2001).

[5] D. J. Watts and S. H. Strogatz, Nature(London) 393, 440
(1998).

[6] Reka Albert and Albert-Laszlo Barabási, Rev. Mod. Phys.74,
47 (2002), and references therein.

[7] S. N. Dorogrovtsev and J. F. F. Mendels, Adv. Phys.51, 1079
(2002), and references therein.

[8] Chen-Ping Zhu and Shi-Jie Xiong, Phys. Rev. B62, 14 780
(2000); 63, 193405(2001).

[9] A. D. Sánchez, J. M. López, and M. A. Rodríguez, Phys. Rev.

Lett. 88, 048701(2002).
[10] P. Erdös and P. Rényi, Publ. Math. Inst. Hung. Acad. Sci.5, 17

(1960).
[11] A.-L. Barabäsi and R. Albert, Science286, 509 (1999).
[12] A.-L. Barabäsi, R. Albert, and H. Jeong, Physica A272, 173

(1999).
[13] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E63,

066117(2001).
[14] N. Shigesada and K. Kawasaki,Biological Invasions: Theory

and Practice(Oxford University Press, Oxford, 1997).
[15] R. M. May and A. L. Lloyd, Phys. Rev. E64, 066112(2001).
[16] M. E. J. Newman, Phys. Rev. E66, 016128(2002).
[17] Y. Hayashi, M. Minoura, and J. Matsukubo, Phys. Rev. E69,

016112(2004).
[18] J. O. Kephart and S. R. White, inProceedings of the 1993

IEEE Computer Society Symposium on Research in Security
and Privacy, sponsored by the IEEE Computer Society, Tech-
nical Committee on Security and Privacy in cooperation with
the International Association for Cryptologic Research(IACR)
(IEEE, Washington, D. C., 1993), p. 2.

DYNAMICS AND ASYMPTOTICAL BEHAVIOR OF… PHYSICAL REVIEW E 69, 066102(2004)

066102-5


